0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Clustering Open Data for Predictive Modeling of Residential Energy Consumption across Variable Scales: A Case Study in Andalusia, Spain

Auteur(s): ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 8, v. 14
Page(s): 2335
DOI: 10.3390/buildings14082335
Abstrait:

The energy budget of households, linked to residential energy consumption (REC), serves as a critical indicator of quality of life and economy trends. Despite the lack of widely available accurate statistics at regional or smaller scales, they are of crucial interest for a better understanding of the features influencing REC and its impact on energy poverty, wellbeing, and the climate crisis. This research aims to present a new information model for predictive parameters and REC forecasting through an innovative use of available open data. Geoprocessing, data mining, and machine learning clustering algorithms were applied to open datasets of location, population, and residential building stock parameters highly correlated with their REC, on the ensemble of 785 municipalities of Andalusia, Spain. The model identified 65 clusters of towns sharing the same potential REC, with 73% of the population concentrated in 10 of these. The resulting data-driven bottom-up model of provincial REC had a mean absolute error of only 0.63%. Furthermore, it provided the territorial distribution, with local resolution, of the identified clusters of cities with similar characteristics. This methodology, with a flexible regional- to city-scale analysis, provides knowledge generation that offers numerous practical applications for energy policy planning. Its future implementation would assist stakeholders and policymakers in enhancing the performance and decarbonization of the residential building stock.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10795494
  • Publié(e) le:
    01.09.2024
  • Modifié(e) le:
    01.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine