Classical and Bayesian Estimation of the Inverse Weibull Distribution: Using Progressive Type-I Censoring Scheme
Auteur(s): |
Ali Algarni
Mohammed Elgarhy Abdullah M. Almarashi Aisha Fayomi Ahmed R. El-Saeed |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2021, v. 2021 |
Page(s): | 1-15 |
DOI: | 10.1155/2021/5701529 |
Abstrait: |
The challenge of estimating the parameters for the inverse Weibull (IW) distribution employing progressive censoring Type-I (PCTI) will be addressed in this study using Bayesian and non-Bayesian procedures. To address the issue of censoring time selection, qauntiles from the IW lifetime distribution will be implemented as censoring time points for PCTI. Focusing on the censoring schemes, maximum likelihood estimators (MLEs) and asymptotic confidence intervals (ACI) for unknown parameters are constructed. Under the squared error (SEr) loss function, Bayes estimates (BEs) and concomitant maximum posterior density credible interval estimations are also produced. The BEs are assessed using two methods: Lindley’s approximation (LiA) technique and the Metropolis-Hasting (MH) algorithm utilizing Markov Chain Monte Carlo (MCMC). The theoretical implications of MLEs and BEs for specified schemes of PCTI samples are shown via a simulation study to compare the performance of the different suggested estimators. Finally, application of two real data sets will be employed. |
Copyright: | © Ali Algarni et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.65 MB
- Informations
sur cette fiche - Reference-ID
10648167 - Publié(e) le:
10.01.2022 - Modifié(e) le:
17.02.2022