Chloride Ion Corrosion Resistance of Innovative Self-Healing SMA Fiber-Reinforced Engineering Cementitious Composites under Dry-Wet Cycles for Ocean Structures
Auteur(s): |
Weihong Chen
Yi Liu Hui Qian Peng Wu Yingxiong Wu Fanghao Liu |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 14 février 2023, n. 2, v. 13 |
Page(s): | 518 |
DOI: | 10.3390/buildings13020518 |
Abstrait: |
To evaluate the chloride ion corrosion resistance of proposed innovative self-healing concrete based on shape memory alloys (SMA) and engineering cementitious composites (ECC), a total of 2 kinds of 22 specimens were prepared. Chloride ion corrosion tests of self-healing SMA-ECC concrete under dry-wet cycles were carried out. It was found that the chloride ion erosion depths of SMA-ECC were significantly smaller than that of MC, and the growth rate of erosion depth of SMA-ECC was obviously smaller than that of MC after 15 dry-wet (dry and wet) corrosion cycles. The chloride ion content of SMA-ECC vanished at the erosion depth more than 10 mm, which was consistent with the test result of AgNO3 solution color-rendering test. Test results indicate that, compared to marine concrete (MC), SMA-ECC has a better chloride ion corrosion resistance behavior. Moreover, the chloride ion concentration of SMA-ECC at a chloride ion erosion depth of less than 10 mm decreased more significantly than that of MC, indicating that almost all chloride salt solution reacted in the outer layer of SMA-ECC, which is consistent with the conclusions of 4.1 and 4.2. Finally, based on the erosion distribution of chloride ions and Fick’s second law, a calculation model describing the relationship between the apparent chloride ion diffusion coefficient and the boundary condition of the chloride ion content was proposed. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
5.36 MB
- Informations
sur cette fiche - Reference-ID
10711927 - Publié(e) le:
21.03.2023 - Modifié(e) le:
10.05.2023