0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Chloride diffusion modeling of concrete using tree‐based forest models

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Structural Concrete, , n. 4, v. 24
Page(s): 5614-5634
DOI: 10.1002/suco.202300245
Abstrait:

Reinforced concrete structures can experience various harsh environments during their service life, among which chloride ion exposure, especially in marine environments, can cause the durability reduction and deterioration of concrete structures. Artificial intelligence (AI)‐based modeling of the non‐steady‐state apparent chloride diffusion coefficient (DC) of concrete for a long exposure time using the experimental field results can assist in identifying the influential factors and better estimating the service life of a concrete structure. In this study, two novel extensions of ensemble AI algorithms, including genetic programming forest (GPF) and linear genetic programming forest (LGPF) algorithms, were proposed to model the DC of concrete. The experimental field data were gathered from the literature. Different structures of the proposed ensemble methods were developed and examined, and the best‐developed model was selected for further analysis, including sensitivity analysis and parametric study. In addition, the random forest (RF) method was used as the control ensemble technique to have a comparison. The results show that the best LGPF model possesses superior performance than the best‐developed GPF and RF models. In addition, the results show that silica fume‐to‐binder ratio, exposure time, and exposure conditions have the most significant impacts on the DC of concrete. This study contributes to the civil engineering practice by developing a new tool to model the DC of concrete that facilitates the durability assessment of concrete structures.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1002/suco.202300245.
  • Informations
    sur cette fiche
  • Reference-ID
    10734109
  • Publié(e) le:
    03.09.2023
  • Modifié(e) le:
    03.09.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine