Cascaded Control for Building HVAC Systems in Practice
Auteur(s): |
Chris Price
Deokgeun Park Bryan P. Rasmussen |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 27 octobre 2022, n. 11, v. 12 |
Page(s): | 1814 |
DOI: | 10.3390/buildings12111814 |
Abstrait: |
Actuator hunting is a widespread and often neglected problem in the HVAC field. Hunting is typically characterized by sustained or intermittent oscillations, and can result in decreased efficiency, increased actuator wear, and poor setpoint tracking. Cascaded control loops have been shown to effectively linearize system dynamics and reduce the prevalence of hunting. This paper details the implementation of cascaded control architectures for Air Handling Unit chilled water valves at three university campus buildings. A framework for implementation the control in existing Building Automation software is developed that requires only a single line of additional code. Results gathered for more than a year show that cascaded control not only eliminates hunting in control loops with documented hunting issues, but provides better tracking and more consistent performance during all seasons. A discussion of efficiency losses due to hunting behavior is presented and illustrated with comparative data. Furthermore, an analysis of cost savings from implementing cascaded chilled water valve control is presented. Field tests show 2.2–4.4% energy savings, with additional potential savings from reduced operational costs (i.e., maintenance and controller retuning). |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
9.77 MB
- Informations
sur cette fiche - Reference-ID
10700360 - Publié(e) le:
10.12.2022 - Modifié(e) le:
15.02.2023