0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Building models of technological processes based on neuro-fuzzy technology

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Physics: Conference Series, , n. 1, v. 2697
Page(s): 012029
DOI: 10.1088/1742-6596/2697/1/012029
Abstrait:

The work considers the issues of formalization of the extraction process in the form of a generalized regression neural network model, which are the basis for solving the problem of analysis and synthesis of the extraction process control system for obtaining petroleum products. An adaptive learning algorithm for a neural network model has been developed that is characterized by high speed and accuracy. A comparative analysis of the developed model with existing ones was made, which showed the effectiveness of the proposed algorithm for building the architecture of neural network models and learning the weight coefficients of the model.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1742-6596/2697/1/012029.
  • Informations
    sur cette fiche
  • Reference-ID
    10777545
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine