0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Bridge Damage Detection Using Ambient Loads by Bayesian Hypothesis Testing for a Parametric Subspace of an Autoregressive Model

Auteur(s): ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Structural Control and Health Monitoring, , v. 2023
Page(s): 1-20
DOI: 10.1155/2023/7986061
Abstrait:

This study explores a change detection method in modal properties to automate and generalize in-service damage detection for vibration-based structural health monitoring of bridges. The noisy conditions caused by ambient loading pose difficulty for in-service damage detection because the load-induced noise often masks the difference in the modal properties. The proposed method directly converts measured time series into a simplified anomaly indicator robust against load-induced noise. This study adopts a vector autoregressive model to represent the vibration of bridges. Bayesian inference produces a posterior probability distribution function of the model parameters. Principal component analysis extracts a subspace comparable to the modal properties in the model parameters. Bayesian hypothesis testing quantifies anomalies in the extracted subspace. The feasibility of the proposed method is assessed with vibration data from field experiments conducted on an actual steel truss bridge. The field experiment includes damage severing the truss members. The modal frequencies and mode shapes estimated from the principal component analysis correspond well to earlier reported results. The proposed damage detection method successfully indicated all damage considered in the experiment.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2023/7986061.
  • Informations
    sur cette fiche
  • Reference-ID
    10734862
  • Publié(e) le:
    03.09.2023
  • Modifié(e) le:
    03.09.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine