0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Biochar as a bio-renewable addition to enhance carbonation of reactive MgO cement based composites

Auteur(s): ORCID
ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Materials and Structures, , n. 3, v. 58
DOI: 10.1617/s11527-025-02573-5
Abstrait:

Reactive magnesium oxide cement (RMC) is emerging as a sustainable binder in construction applications due to its ability to sequester CO2 through carbonation, forming stable carbonates. However, the efficiency of RMC carbonation relies heavily on maintaining sufficient humidity and CO2 concentration during curing. Various additives—including hydration agents, carbonate species, and seeds—have demonstrated effectiveness in enhancing both hydration and carbonation of RMC, thereby improving its mechanical performance. This study explores the use of biochar—a highly porous, carbon-based by-product of biomass pyrolysis—as a sustainable and cost-effective carbonation aid by evaluating its impact on the physical, rheological, mechanical, and microstructural properties of RMC composites. The results showed that the incorporation of 2 wt% biochar significantly improved early-age mechanical performance, with compressive strength increasing from 37.8 to 45.8 MPa at 7-days under CO2 curing, and promoted the formation of hydrated magnesium carbonates (HMCs), raising total HMCs content from 5.4 to 13.9 wt% at 7-days under CO2 curing. This improvement is attributed to biochar’s micro-filler effect, internal curing capability and its ability to facilitate CO2 diffusion. Moreover, the inclusion of biochar effectively shortened the curing time, further enhancing the sustainability of CO2 curing by reducing energy consumption. In conclusion, this study highlights the potential of biochar as a bio-renewable additive in RMC-based composites, enhancing brucite and HMCs formation, shortening CO2-curing time and contributing to development of sustainable, carbon-efficient construction materials.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1617/s11527-025-02573-5.
  • Informations
    sur cette fiche
  • Reference-ID
    10818721
  • Publié(e) le:
    11.03.2025
  • Modifié(e) le:
    11.03.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine