BIM-Based Automated Multi-Air Distribution Layout Generation for Office Buildings: A Case Study
Auteur(s): |
Zixuan Qi
Ruiying Jin Junjie Li Hang Guan Peng Xu |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 28 juin 2023, n. 7, v. 13 |
Page(s): | 1819 |
DOI: | 10.3390/buildings13071819 |
Abstrait: |
Although HVAC (Heating Ventilation, and Air Conditioning) layout design has transitioned from 2D drawings to 3D BIM models, the traditional manual process of sizing and placing terminal units is still a time-consuming task, which can lead to inappropriate airflow and wastage of resources due to human error. The purpose of this paper is to develop a highly robust method for sizing and placing HVAC terminal units in rooms, while also systematically avoiding obstacles based on the locations of air terminal units and FCUs (Fan Coil Units) to which they belong. The method employs a “scan” approach to solve the problem of insufficient robustness caused by the traditional grid division method. Rule-based iterative algorithms are utilized for the sizing of terminals, airflow verification, and obstacle avoidance to generate a complete set of FCU and CAV (Constant Air Volume) system terminal layouts within a building. The method was tested for the automated design of HVAC terminal layouts in six different buildings and successfully completed the task within seconds, demonstrating the method’s immediacy and robustness. Moreover, airflow organization tests showed that the terminal layouts generated by the algorithm had a 95% pass rate, indicating the effectiveness of the method. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
7.68 MB
- Informations
sur cette fiche - Reference-ID
10737391 - Publié(e) le:
03.09.2023 - Modifié(e) le:
14.09.2023