0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Behaviour Of Reactive Powder Concrete Hollow Core Columns Strengthened With Carbon Fiber Reinforced Polymer Under Eccentric Loading

Auteur(s): ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Electronic Journal of Structural Engineering, , n. 3, v. 22
Page(s): 28-38
DOI: 10.56748/ejse.223293
Abstrait:

The behavior of hollow-core columns composed of reactive powder concrete (RPC) contained by a circular carbon fiber reinforced polymer (CFRP) tube is investigated numerically in this work. This research used circular hollow core column samples with an outside diameter of 20.6 cm, an interior diameter of 9cm, and a height of 80cm. These examples have been created utilizing 116 MPa reactive powder concrete. Nine groupings of specimens were created. A control set of nine unconfined hollow columns with stirrups strengthened by 12mm longitudinal bars (HCRPC). Groups two through five have been produced up of RPC hollow column specimens with similar reinforcement but were externally confined with CFRP of 0.131, 0.262, 1.2, and 2.4mm thick (These thicknesses are commercially available (0.131 for CFRP one layer sheet, 0.262 for two layers of CFRP sheet; 1.2 for one layer of CFRP plate. And 2.4 for two-layer of CFRP plate) respectively, placed at mid-length of the columns. Sets six to nine, on the other hand, are identical to the previous sets, but the CFRP restriction has been put at both columns' ends. Axial load thru the column center and uniaxial loading with 2.5 and 5 cm eccentricities from the center were applied to all columns. According to the findings, CFRP confinement boosted the strength of HCRPC columns marginally.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.56748/ejse.223293.
  • Informations
    sur cette fiche
  • Reference-ID
    10778684
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine