0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Behavior of Concrete Compressive Strength by Utilizing Fly Ash and Wood Powder

Auteur(s): ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Malaysian Journal of Civil Engineering, , n. 3, v. 33
DOI: 10.11113/mjce.v33.17398
Abstrait:

The release of CO₂ into the atmosphere, which is caused by cement manufacturing, is a substantial cause of global warming. Besides, rapid industrial expansion has prompted concerns about how to properly dispose of industrial by-products. Many of them might pollute the environment if discarded in open landfills. In recent years, utilization of natural and industrial waste as a supplement to cement or aggregates has become incredibly popular as a means of improving concrete performance, satisfy rising cement needs and achieving environmental sustainability. A blend of fly ash (as a cement substitute) and wood powder (as a fine aggregate substitute) might be a viable alternative for determining the impact on the concrete mixture. In this study, fine aggregate is substituted with 5%, 10%, and 15% wood powder, and cement is replaced with 10%, 15%, and 20% fly ash to get the best combination in terms of compressive strength. When a 5% wood powder replacement is done with fine aggregate and a 10-15% replacement of cement is made with fly ash, compressive strength improves between 2.19-3.58% and 4.12-7.51% for 28 days and 90 days. It is found that if the quantity of wood powder in concrete exceeds 5%, the compressive strength drops dramatically. Besides that, concrete constructed with a 20% fly ash and 15% wood powder mixture disintegrated while curing. However, concrete containing up to 10% wood powder and up to 15% fly ash has been demonstrated to be effective when compared to plain concrete. Furthermore, based on the compressive strength test results of concrete at 28 days and environmental sustainability, a considerable proportion of construction expenses may be saved by substituting 10-15% of cement with fly ash.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.11113/mjce.v33.17398.
  • Informations
    sur cette fiche
  • Reference-ID
    10747204
  • Publié(e) le:
    07.12.2023
  • Modifié(e) le:
    07.12.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine