0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Bearing fault diagnosis based on teager energy entropy and mean-shift fuzzy C-means

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 6, v. 19
Page(s): 1976-1988
DOI: 10.1177/1475921720910710
Abstrait:

Feature extraction and fault recognition of vibration signals are two important parts of bearing fault diagnosis. In this article, a fault diagnosis method based on teager energy entropy of each wavelet subband and improved fuzzy C-means is proposed. First, bearing vibration signal is decomposed into wavelet packet and normalized teager energy entropy feature matrix is constructed as clustering index. Principal component analysis is applied to the high-dimensional teager energy entropy feature matrix, and the principal components are determined by cumulative contribution rate to construct feature vectors. Then, the mean-shift method is used to search for the high probability density region of principal components so as to determine the cluster number and cluster center. Finally, fuzzy C-means is used to update the clustering center and membership value, and confirm the optimal clustering center and the type of clustering. Through simulated and experimental analysis, the proposed method has two advantages. The feature vector constructed by this method has better specificity than wavelet energy entropy. The initial clustering center of fuzzy C-means is confirmed by the mean-shift method, which can improve the clustering performance of fuzzy C-means and solve the misclassification without preknowing the number of categories.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921720910710.
  • Informations
    sur cette fiche
  • Reference-ID
    10562407
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine