0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Bearing Defect Classification Algorithm Based on Autoencoder Neural Network

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-9
DOI: 10.1155/2020/6680315
Abstrait:

The postproduction defect classification and detection of bearings still relies on manual detection, which is time-consuming and tedious. To address this, we propose a bearing defect classification network based on an autoencoder to enhance the efficiency and accuracy of bearing defect detection. An improved autoencoder is used to reduce dimension feature extraction and reduce large-scale images to small-scale images through encoder dimensional reduction. Defect classification is completed by feeding the extracted features into a convolutional classification network. Comparative experiments show that the neural network can effectively complete feature selection and substantially improve classification accuracy while avoiding the laborious algorithm of the conventional method.

Copyright: © Manhuai Lu and Yuanxiang Mou et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10535995
  • Publié(e) le:
    01.01.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine