0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Bayesian RC-Frame Finite Element Model Updating and Damage Estimation Using Nested Sampling with Nonlinear Time History

Auteur(s): ORCID
ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 5, v. 13
Page(s): 1281
DOI: 10.3390/buildings13051281
Abstrait:

This paper proposes a Bayesian RC-frame finite element model updating (FEMU) and damage state estimation approach using the nonlinear acceleration time history based on nested sampling. Numerical RC-frame finite element model (FEM) parameters are selected through nested sampling, and their probability density is estimated using nonlinear time history. In the first step, we estimate the error standard deviation and select the FEM parameters that are required to be updated by FEMU. In the second step, we estimate the probability density of the selected parameters and realize the FEMU through the resampling method and kernel density estimation (KDE). Additionally, we propose a damage state estimate approach, which is a derivative method of the FEMU sample. The numerical results demonstrate that the proposed approach is reliable for the Bayesian FEMU and damage state estimation using nonlinear time history.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10728069
  • Publié(e) le:
    30.05.2023
  • Modifié(e) le:
    01.06.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine