0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Bayesian Network-Based Knowledge Graph Inference for Highway Transportation Safety Risks

Auteur(s): ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-11
DOI: 10.1155/2021/6624579
Abstrait:

Accurate inference of knowledge about highway transportation safety risks forms a crucial aspect of building a knowledge graph. Based on the data related to highway transportation accidents, this study has developed a Bayesian network model. The initial identification of the network nodes is through expert scoring. The network structure is then constructed by utilizing the prior expert knowledge and K2 greedy search algorithm. Later, the network parameters are trained via the expectation-maximization (EM) algorithm. Finally, knowledge about highway transportation safety risks is inferred using the junction tree algorithm. A comparison is made between the trained conditional and actual probabilities during the network parameter training to verify the validity of the proposed model that accords with expert experience, thereby proving the model validity. Further, its main “causal chain” is inferred to be an improper emergency response-human failure-accident occurrence, where the probability of driver failure is 82%, and the probability of accident occurrence is 68% by taking “a certain road traffic accident” as an example. There is consistency between the inference results and the actual accident sequence that suggests the effectiveness of the proposed knowledge inference method.

Copyright: © 2021 Luo Wenhui et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10589745
  • Publié(e) le:
    08.03.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine