0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Bayesian machine learning approach for online detection of railway wheel defects using track-side monitoring

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 4, v. 20
Page(s): 147592172092177
DOI: 10.1177/1475921720921772
Abstrait:

Wheel condition assessment is of great significance to ensure the operation safety of trains and metro systems. This study is intended to develop a Bayesian probabilistic method for online and quantitative assessment of railway wheel conditions using track-side strain-monitoring data. The proposed method is a fully data-driven, nonparametric approach without the need of a physical model. To enable defect identification using only response measurement, the measured dynamic strain responses of rail tracks during the passage of trains are processed to elicit the normalized cumulative distribution function values representative of the effect of individual wheels, which in conjunction with the frequency points are used to formulate a probabilistic reference model in terms of sparse Bayesian learning. Through cleverly realizing sparsity by introducing hyper-parameters and their priors, the sparse Bayesian learning makes the resulting model to exempt from overfitting and generalize well on unseen data. Only the monitoring data in healthy state are needed in formulating the reference model. A novel Bayesian null hypothesis significance testing in terms of scale-invariant intrinsic Bayes factor, which does not suffer from the Jeffreys–Lindley paradox, is then pursued in the presence of new monitoring data collected from possibly defective wheel(s) to detect wheel defects and quantitatively assess wheel condition. The proposed method in fully Bayesian inference framework is verified by utilizing the real-world monitoring data acquired by a distributed fiber Bragg grating–based track-side monitoring system and comparing with the offline inspection results.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921720921772.
  • Informations
    sur cette fiche
  • Reference-ID
    10562443
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    09.07.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine