0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Axial compressive behavior of self-compacting micro-expansive high-strength concrete confined by glass fiber reinforced plastic tube

Auteur(s):
ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Structural Engineering, , n. 8, v. 26
Page(s): 1512-1524
DOI: 10.1177/13694332231166568
Abstrait:

To solve the instability of the compression bars in the space truss composed of GFRP tubes, a composite column with high-strength concrete (HSC) confined by glass fiber-reinforced plastic (GFRP) tube was proposed. High-strength self-compacting micro-expansive concrete with a slump greater than 255 mm was produced under normal-temperature curing conditions and confined by GFRP tubes. A mechanical performance test of the GFRP-confined HSC short column under axial compression was performed. The effects of GFRP tube types, concrete expansion agent, constraint effect, ultimate load capacity, and failure mode of the composite structure were discussed and analyzed through the test. A model of the stress-strain response of the GFRP confined HSC column was proposed. The results show that the 45° fiber-wound GFRP tube has a significant restraining effect on the HSC. The stress-strain relationship increases quadratically in a linear fashion. When the composite column was damaged, the GFRP fiber was broken and the concrete was crushed. The ultimate strength was about 1.5 times that of unconstrained HSC columns, and the loading method has less influence on the results. The expansion agent has a significant effect on the deformation performance of the composite column, and its ultimate strain was about 1.4 times that of the composite column without expansion agent.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/13694332231166568.
  • Informations
    sur cette fiche
  • Reference-ID
    10725675
  • Publié(e) le:
    30.05.2023
  • Modifié(e) le:
    30.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine