0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Automating Dataset Generation for Object Detection in the Construction Industry with AI and Robotic Process Automation (RPA)

Auteur(s): ORCID
ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 3, v. 15
Page(s): 410
DOI: 10.3390/buildings15030410
Abstrait:

The construction industry is increasingly adopting artificial intelligence (AI) to enhance productivity and safety, with object detection in visual data serving as a vital tool. However, developing robust object detection models demands extensive, high-quality datasets, which are often difficult to generate and maintain in construction due to the dynamic and complex nature of job sites. This paper presents an innovative approach to automating dataset generation using robotic process automation (RPA) and generative AI techniques, specifically, DALL-E 2. This approach not only accelerates dataset creation but also improves model performance by delivering balanced, high-quality inputs. To validate the proposed methodology, a case study of a building construction site is conducted. In this study, three commonly used convolutional neural network architectures—RetinaNet, Faster R-CNN, and YOLOv5—are trained with the artificially generated dataset to automate the identification of formworks and rebars during construction.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10816200
  • Publié(e) le:
    03.02.2025
  • Modifié(e) le:
    03.02.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine