Automatic Recognition and Geolocation of Vertical Traffic Signs Based on Artificial Intelligence Using a Low-Cost Mapping Mobile System
Auteur(s): |
Hugo Domínguez
Alberto Morcillo Mario Soilán Diego González-Aguilera |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Infrastructures, octobre 2022, n. 10, v. 7 |
Page(s): | 133 |
DOI: | 10.3390/infrastructures7100133 |
Abstrait: |
Road maintenance is a key aspect of road safety and resilience. Traffic signs are an important asset of the road network, providing information that enhances safety and driver awareness. This paper presents a method for the recognition and geolocation of vertical traffic signs based on artificial intelligence and the use of a low-cost mobile mapping system. The approach developed includes three steps: First, traffic signals are detected and recognized from imagery using a deep learning architecture with YOLOV3 and ResNet-152. Next, LiDAR point clouds are used to provide metric capabilities and cartographic coordinates. Finally, a WebGIS viewer was developed based on Potree architecture to visualize the results. The experimental results were validated on a regional road in Avila (Spain) demonstrating that the proposed method obtains promising, accurate and reliable results. |
Copyright: | © 2022 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
4.65 MB
- Informations
sur cette fiche - Reference-ID
10722811 - Publié(e) le:
22.04.2023 - Modifié(e) le:
10.05.2023