0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Automatic assessment of roofs conditions using artificial intelligence (AI) and unmanned aerial vehicles (UAVs)

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Frontiers in Built Environment, , v. 8
DOI: 10.3389/fbuil.2022.1026225
Abstrait:

Building roof inspections must be performed regularly to ensure repairs and replacements are done promptly. These inspections get overlooked on sloped roofs due to the inefficiency of manual inspections and the difficulty of accessing sloped roofs. Walking a roof to inspect each tile is time-consuming, and as the roof slope increases, this difficulty increases the time needed for an inspection. Moreover, there is an intrinsic safety risk involved. Falls from roofs tend to cause severe and expensive injuries. The emergence of new sensing technologies and artificial intelligence (AI) such as high-resolution imagery and deep learning has enabled humans to move beyond the concept of using manual labor in damage assessments. It has brought significant advantages in the field of safety management, and it can be a substitute for the traditional assessment of roofs. This study uses unmanned aerial vehicles (UAVs) and deep learning technology to perform sloped roof inspections effectively, thus eliminating the safety risk involved in traditional manual inspections. This study utilizes UAVs and deep learning to automatically collect and classify roof imagery to identify missing shingles on the roof. The proposed research can help real estate agents, insurance companies, and others make better and more informed decisions about roof conditions. Future research could be refining the model to deal with different types of defects in addition to missing shingles.

Copyright: © 2022 Ammar Alzarrad, Ibukun Awolusi, Muhammad T. Hatamleh, Saratu Terreno
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10702882
  • Publié(e) le:
    11.12.2022
  • Modifié(e) le:
    15.02.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine