Automated Selection and Localization of Mobile Cranes in Construction Planning
Auteur(s): |
Hongling Guo
Ying Zhou Zaiyi Pan Zhitian Zhang Yantao Yu Yan Li |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 24 avril 2022, n. 5, v. 12 |
Page(s): | 580 |
DOI: | 10.3390/buildings12050580 |
Abstrait: |
Accurate selection and location of mobile cranes is a critical issue on construction sites, being able to contribute to the improvement of the safety and efficiency of lifting operations. Considering the complexities and dynamics of construction sites, this study aimed to develop a useful approach for automated selection and localization of mobile cranes based on the simulation of crane operations. First, the information required for crane selection and localization is analyzed and extracted from BIM (building information modeling). Then, mainly considering the crane capacity, the initial crane type is selected with candidate location points. Based on the simulation of lifting operation at the candidate points, feasible location points and crane types are determined through three constraint checks (i.e., environment constraint, operation constraint, and safety constraint). Besides, two kinds of efficiency optimization, namely lifting time minimization and crane movement minimization, are presented to figure out the best location points from the feasible points. Finally, the proposed approach is validated using a case study. This research contributes to not only crane operation planning but also automatic construction simulation, thus supporting the implementation of intelligent construction in the future. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.91 MB
- Informations
sur cette fiche - Reference-ID
10664262 - Publié(e) le:
09.05.2022 - Modifié(e) le:
01.06.2022