0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Attenuation and rheological analysis of magnetic field-induced responsiveness for the magnetorheological elastomer-based composite

Auteur(s): ORCID


ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Smart Materials and Structures, , n. 2, v. 31
Page(s): 025024
DOI: 10.1088/1361-665x/ac4578
Abstrait:

A novel self-supporting multi-layer magnetorheological elastomer-based (MRE-based) composite with large magnetic field-induced responsiveness has been designed and fabricated. We characterized its morphological properties, evaluated the impact of fabrication conditions on its field-induced responsiveness, investigated attenuation of its field-induced responsiveness under different storage temperatures along with time and analyzed this mechanism from the perspective of rheology. The results showed that the MRE-based composite had homogeneous dispersing of the magnetic fillers and a clear interface between different layers. The field-induced responsiveness of the MRE-based composite could be affected by the fabrication conditions, and it attenuated at different rates when subjected to different storage temperatures along with time; its attenuation period lasted a few days under room temperature while over one month under low temperature (4 °C). The rheological analysis results indicated a long-term cross-linking process over the storage period along with the attenuation of field-induced responsiveness, which might lead to increasing elasticity (indicated by the loss factor tan δ) and rigidity (indicated by the storage modulus G′) of the MRE-based composite along with the storage period. What’s more, emerging feature of Payne effect could be found on MRE-based composite during cyclic shear, which indicated decline of the mechanical properties due to strain-induced inherent friction. On the other hand, the iron fillers in MRE layer could enhance the shear modulus and lead to MR effect (up to 187%) for the whole composite, which benefits to the magnetic field-induced responsiveness, due to the relative strengthen of the MRE layer against the assist layer. This work presents a better understanding on the attenuation of the field-induced responsiveness, which is important for the future application of the MRE-based composite.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1361-665x/ac4578.
  • Informations
    sur cette fiche
  • Reference-ID
    10647782
  • Publié(e) le:
    07.01.2022
  • Modifié(e) le:
    07.01.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine