0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Artificial intelligence-based automatic visual inspection system for built heritage

Auteur(s): ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Smart and Sustainable Built Environment, , n. 3, v. 11
Page(s): 622-646
DOI: 10.1108/sasbe-09-2020-0139
Abstrait:

Purpose

Heritage is the latent part of a sustainable built environment. Conservation and preservation of heritage is one of the United Nations' (UN) sustainable development goals. Many social and natural factors seriously threaten heritage structures by deteriorating and damaging the original. Therefore, regular visual inspection of heritage structures is necessary for their conservation and preservation. Conventional inspection practice relies on manual inspection, which takes more time and human resources. The inspection system seeks an innovative approach that should be cheaper, faster, safer and less prone to human error than manual inspection. Therefore, this study aims to develop an automatic system of visual inspection for the built heritage.

Design/methodology/approach

The artificial intelligence-based automatic defect detection system is developed using the faster R-CNN (faster region-based convolutional neural network) model of object detection to build an automatic visual inspection system. From the English and Dutch cemeteries of Surat (India), images of heritage structures were captured by digital camera to prepare the image data set. This image data set was used for training, validation and testing to develop the automatic defect detection model. While validating this model, its optimum detection accuracy is recorded as 91.58% to detect three types of defects: “spalling,” “exposed bricks” and “cracks.”

Findings

This study develops the model of automatic web-based visual inspection systems for the heritage structures using the faster R-CNN. Then it demonstrates detection of defects of spalling, exposed bricks and cracks existing in the heritage structures. Comparison of conventional (manual) and developed automatic inspection systems reveals that the developed automatic system requires less time and staff. Therefore, the routine inspection can be faster, cheaper, safer and more accurate than the conventional inspection method.

Practical implications

The study presented here can improve inspecting the built heritages by reducing inspection time and cost, eliminating chances of human errors and accidents and having accurate and consistent information. This study attempts to ensure the sustainability of the built heritage.

Originality/value

For ensuring the sustainability of built heritage, this study presents the artificial intelligence-based methodology for the development of an automatic visual inspection system. The automatic web-based visual inspection system for the built heritage has not been reported in previous studies so far.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1108/sasbe-09-2020-0139.
  • Informations
    sur cette fiche
  • Reference-ID
    10779790
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine