0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Architectural Glass under Climatic Actions and Fire: Review of State of the Art, Open Problems and Future Perspectives

Auteur(s): ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 4, v. 13
Page(s): 939
DOI: 10.3390/buildings13040939
Abstrait:

A critical issue in the design of structural glass elements in buildings is represented by the evaluation of thermally induced stresses and strains. For both climatic actions and fire, thermal stresses represent one of the main causes of premature failure, due to the high sensitivity of glass to temperature gradients. Thermal loads pose a severe safety risk for glass, due to their uneven distribution but also the lack of knowledge on the modification of mechanical properties with temperature. In design practice, approximate tools are used to describe temperature fields in glazing, which do not adequately estimate the thermally induced stresses. Additionally, the existing standards prescribe different methods for the calculation of both the temperature field and the consequent stress, usually based on strong simplifying assumptions, and there is a lack of uniformly defined procedures. Here, an accurate review of the state of the art on glass elements exposed to thermal actions, from both the scientific and the regulatory perspectives, is presented. Reference is made first to the evaluation of the thermal actions, and further to the proper assessment of both the temperature distribution and the consequent thermal stress. The paper also emphasizes open problems and future perspectives related to these topics, to evidence areas of research that should be strengthened and possible future enhancements to the current design and assessment methodologies, which should also be introduced in a regulatory framework.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10728255
  • Publié(e) le:
    30.05.2023
  • Modifié(e) le:
    01.06.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine