0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Arbitrary low-frequency power-splitting strategy in ferrite/piezoelectric magnetoelectric heterostructures: theory and experimental validation

Auteur(s): ORCID



ORCID
ORCID

ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Smart Materials and Structures, , n. 9, v. 33
Page(s): 095019
DOI: 10.1088/1361-665x/ad6961
Abstrait:

Exploring low-frequency (LF) arbitrary power-splitting technologies to address the independent excitation issues of LF/VLF mechanical antennas (MA) with random distributions is challenging due to unidentified device construction and operation mechanism. In light of this, a device construction strategy for three-port magnetoelectric (ME) arbitrary power splitter in composite of ferrite/piezoelectric heterostructure, as well as theoretical model was developed. To validate the feasibility and effectiveness of the strategy, three size-tailored ME samples with length ratio of split PZT segments in 1:1, 2:1, and 3:2 were modeled, fabricated and comparatively characterized. Experimental results show that the achievable maximum power conversion efficiencies (PE) reach 52%, 71%, and 59% for three tailored ME samples, respectively, and as expected the power-splitting ratios are directly proportional to the square ratio of ME voltage coefficient (MEVC) from each port of the tailored ME samples, which are in coincidence with theory under desired operation stability and favorable experiment repeatability evaluated by uncertainties of 0.25854 V cm−1 Oe−1 and 0.32979 V cm−1 Oe−1 for each port. Therefore, a prediction of evolutionary tendency for arbitrary power splitter realization was expanded in view of our experimental observations, and a great flexibility for device future design and further optimization was also provided. Therefore, the presented LF power-splitting strategy paves the ways for arbitrary power splitter realization and enriches the multi-functional ME power electronics families, as well as enables potential applications for efficient excitations of MAs in high-permeable military underwater and civilian emergency rescue distribution long-wave communication system for practical scenarios of submarine, underground railways, tunnels and collapsed residential buildings.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1361-665x/ad6961.
  • Informations
    sur cette fiche
  • Reference-ID
    10790738
  • Publié(e) le:
    01.09.2024
  • Modifié(e) le:
    01.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine