An Approach to Pipe Image Interpretation Based Condition Assessment for Automatic Pipe Inspection
Auteur(s): |
John Mashford
David Marlow Stewart Burn |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, 2009, v. 2009 |
Page(s): | 1-11 |
DOI: | 10.1155/2009/317097 |
Abstrait: |
Condition assessment forms an important part of the asset management of buried pipelines. This is carried out through the use of inspection systems which usually consist of an image acquisition device attached to a mobile robotic platform. Complete or partial automation of image interpretation could increase the efficiency and objectivity of pipe inspection. A key component of an automatic pipe inspection system is the segmentation module. This paper describes an approach to automatic pipe inspection using pixel-based segmentation of colour images by support vector machine (SVM) coupled with morphological analysis of the principal component of the segmented image. The morphological analysis allows the principal component of the segmented image to be decomposed into the pipe flow lines region, the pipe joints, and adjoining defects. A simple approach to detecting pipe connections using fuzzy membership functions relating to defect size and location is also described. |
Copyright: | © 2009 John Mashford et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 3.0 (CC-BY 3.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée. |
3.34 MB
- Informations
sur cette fiche - Reference-ID
10177060 - Publié(e) le:
07.12.2018 - Modifié(e) le:
02.06.2021