0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Applying Biogeography-based Multi-layer Perceptron Neural Network to Predict California Bearing Capacity Value of Stabilized Pond Ash with Lime and Lime Sludge

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Stavební obzor - Civil Engineering Journal, , n. 2, v. 31
Page(s): 349-359
DOI: 10.14311/cej.2022.02.0026
Abstrait:

In this study, a hybrid biogeography-based multi-layer perceptron neural network (BBO-MLP) with different number of hidden layers (one up to three) was developed for predicting the California bearing capacity (CBR) value of pond ash stabilized with lime and lime sludge. To this aim, model had five variables named maximum dry density, optimum moisture content, lime percentage, lime sludge percentage and curing period as inputs, and CBR as output variable. Regarding BBO-MLP models, BBO-MLP1 has the best results, which its R2 stood at 0.9977, RMSE at 0.7397, MAE at 0.476, and PI at 0.0104. In all three developed models, the estimated CBR values specify acceptable agreement with experimental results, which represents the workability of proposed models for predicting the CBR values with high accuracy. Comparison of three developed models supply that BBO-MLP1 outperform others. Therefore, BBO-MLP1 could be recognized as proposed model.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.14311/cej.2022.02.0026.
  • Informations
    sur cette fiche
  • Reference-ID
    10690235
  • Publié(e) le:
    13.08.2022
  • Modifié(e) le:
    13.08.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine