Application of the Hazardous Waste Vitreous Enamel Generated in the Production Process of Heating Devices as a Partial Replacement for Cement
Auteur(s): |
Milan Kragović
Marija Stojmenović Nenad Ristić Sonja Milićević Sanja Živković Shanke Liu Jelena Gulicovski |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 31 juillet 2022, n. 8, v. 12 |
Page(s): | 1287 |
DOI: | 10.3390/buildings12081287 |
Abstrait: |
Solving problems with hazardous waste materials is of crucial importance today. In the presented study, the application of waste vitreous enamel as a cement replacement up to 30% in mortar and concrete production was investigated. The chemical and physical-chemical characterization of the starting material was performed, as well as a leaching test and physical-mechanical characterization of mortar and concrete mixes. Obtained results showed that, due to its chemical composition, the vitreous enamel used must be classified as hazardous waste. At the same time, it possesses pozzolanic properties and satisfies minimal criteria for use as a cement replacement. Testing mortars and concrete mixes indicate that waste vitreous enamel can be applied as a construction material for cement replacement in the maximal amount of 20%. The leaching test was performed in accordance with international standard EN 12457-2 on hardened mortar with a maximal cement replacement of 20%. The results showed that there was no significant release of toxic elements, i.e., that the practical application of hazardous waste vitreous enamel in the construction industry may be fully in line with environmental standards. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.56 MB
- Informations
sur cette fiche - Reference-ID
10692592 - Publié(e) le:
23.09.2022 - Modifié(e) le:
10.11.2022