The Application of the Grey Neural Network in the Deflection Control of PC Rigid Frame Continuous Box Girder Bridges
Auteur(s): |
Lifeng Wang
Hongwei Jiang Dongpo He |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | The Open Civil Engineering Journal, juin 2015, n. 1, v. 8 |
Page(s): | 416-419 |
DOI: | 10.2174/1874149501408010416 |
Abstrait: |
Deflection control is the crucial procedure in construction control of cantilever prestressed concrete continuous girder bridge. This paper summarizes the advantages of Grey theory's poor information processing and abilities of Neural Network's self-learning and adaption, and the combinational algorithm of grey Neural Network is applied to the prestressed concrete bridge cantilever construction control process. Firstly, GM (1, 1) model and BP artificial Neural Network algorithm to predict the elevation of construction process are introduced respectively. In addition, the elevation prediction model of rigid-framed-continuous girder bridge is established. By practicing in the construction control project of LongHua Bridge, the method is testified to be feasible. The results indicate that, the combinational algorithm of Gray Neural Network to predict the construction elevation has higher reliability and accuracy which can be an effective tool of construction control for the same type bridges. |
Copyright: | © 2015 Lifeng Wang et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
0.16 MB
- Informations
sur cette fiche - Reference-ID
10175666 - Publié(e) le:
02.01.2019 - Modifié(e) le:
02.06.2021