0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Application of Support Vector Machine and Gene Expression Programming on Tropospheric ozone Prognosticating for Tehran Metropolitan

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Civil Engineering Journal, , n. 8, v. 3
Page(s): 557
DOI: 10.28991/cej-030984
Abstrait:

Air pollution became fatal issue for humanity and all environment and developed countries unanimously allocated vast investments on monitoring and researches about air pollutants. Soft computing as a novel way for pollutants prediction can be used for measurement tools calibration which can coincidently decrease the expenditures and enhance their ability to adapt quickly. In this paper support vector machine (SVM) and gene expression programming (GEP) as two powerful approaches with reliable results in previous studies, used to predict tropospheric ozone in Tehran metropolitan by using the photochemical precursors and meteorological parameters as predictors. In a comparison between the two approaches, the best model of SVM gave superior results as it depicted the RMSE= 0.0774 and R= 0.8459 while these results of gene expression programming, respectively, are 0.0883 and 0.7938. Sensitivity of O3 against photochemical precursors and meteorological parameters and also for every input parameter, has been analysed discreetly and the gained results imply that PM2.5, PM10, temperature, CO and NO₂ are the most effective parameters for O3 values tolerances. For SVM, several kernel tricks used and the best appropriate kernel selected due to its result. Nonetheless, gamma and sin2 values varied for every kernel and in the last radial basis function kernel opted as the best trick in this study. Finally, the best model of both applications revealed, and the resulted models evaluated as reliable and acceptable.

Copyright: © 2018 Vahid Mehdipour, Mahsa Memarianfard
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10341160
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine