• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

An Application of Semi-empirical Physical Model of Tsunami-Bore Pressure on Buildings

  1. Al-Faesly, Taofiq / Palermo, Dan / Nistor, Ioan / Cornett, Andrew (2012): Experimental Modeling of Extreme Hydrodynamic Forces on Structural Models. Dans: International Journal of Protective Structures, v. 3, n. 4 (décembre 2012).

    https://doi.org/10.1260/2041-4196.3.4.477

  2. Arikawa (2005), "Large model test of tsunami force on a revetment and on a land structure" in Ann. J. Coast. Eng. JSCE, v. 52 (2005), p. 746

    https://doi.org/10.9753/icce.v34.structures.44

  3. Arikawa (2006), "Large model test on surge front tsunami force" in Ann. J. Coast. Eng. JSCE, v. 53 (2006), p. 796

    https://doi.org/10.2208/proce1989.54.846

  4. Cross (1967), "Tsunami surge forces" in J. waterw. Harb. Div., v. 93 (1967), p. 201
  5. Douglas (2015), "On the effect of bed condition on the development of tsunami-induced loading on structures using OpenFOAM" in Nat. Hazar., v. 76 (2015), p. 1335

    https://doi.org/10.1007/s11069-014-1552-2

  6. Fukui (1963), "Hydraulic study on tsunami" in Coast. Eng. Japan, v. 6 (1963), p. 67

    https://doi.org/10.1080/05785634.1963.11924633

  7. Hayatdavoodi (2014), "Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part II: deck with girders" in Coast. Eng, v. 88 (2014), p. 210

    https://doi.org/10.1016/j.coastaleng.2014.02.007

  8. Higuera (2014), "Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part I: formulation and validation" in Coast. Eng., v. 83 (2014), p. 243

    https://doi.org/10.1016/j.coastaleng.2013.08.010

  9. Ikeya (2015), "Evaluation method of tsunami wave force acting on land structures considering reflection properties" in J. JSCE, Ser. B2 (Coast. Eng.), v. 71 (2015), p. 985

    https://doi.org/10.2208/kaigan.71.I_985

  10. Kihara (2016), "Large-scale tsunami physical simulator - a new type of experimental flume for research on tsunami impact" in Hydrolink, IAHR, v. 1 (2016), p. 24
  11. Kihara (2016), "On evaluation of tsunami bore pressure on a vertical wall" in J. JSCE Ser. B2, v. 72 (2016), p. 973

    https://doi.org/10.2208/kaigan.72.I_973

  12. Kihara (2015), "Large-scale experiments on tsunami-induced pressure on a vertical tide wall" in Coast. Eng., v. 99 (2015), p. 46

    https://doi.org/10.1016/j.coastaleng.2015.02.009

  13. Kihara (2012), in Tsunami Fluid Force on Land Structures (Part I) - Numerical Study for Structures With Finite Width Under Non-Overflow Condition-.
  14. Madsen (1983), "Turbulent bores and hydraulic jumps" in J. Fluid Mech, v. 129 (1983), p. 1

    https://doi.org/10.1017/S0022112083000622

  15. Matsutomi (1991), "The pressure distribution and the total wave force" in Coast. Eng. Japan, v. 38 (1991), p. 626
  16. in Guide to Determining the Potential Tsunami Inundation (Version 2.00)
  17. Nouri (2010), "Experimental investigation of tsunami impact on free standing structures" in Coast. Eng. J, v. 52 (2010), p. 43

    https://doi.org/10.1142/S0578563410002117

  18. Palermo (2013), "Impact of tsunami forces on structures" in J. Tsunami Soc. Int., v. 32 (2013), p. 58
  19. Park (2013), "Tsunami inundation modeling in constructed environments: a physical and numerical comparison of free-surface elevation, velocity, and momentum flux" in Coast. Eng., v. 79 (2013), p. 9

    https://doi.org/10.1016/j.coastaleng.2013.04.002

  20. Ramsden, Jerald D. (1996): Forces on a Vertical Wall due to Long Waves, Bores, and Dry-Bed Surges. Dans: Journal of Waterway, Port, Coastal, and Ocean Engineering, v. 122, n. 3 (mai 1996).

    https://doi.org/10.1061/(asce)0733-950x(1996)122:3(134)

  21. Ramsden, Jerald D. / Raichlen, Fredric (1990): Forces on Vertical Wall Caused by Incident Bores. Dans: Journal of Waterway, Port, Coastal, and Ocean Engineering, v. 116, n. 5 (septembre 1990).

    https://doi.org/10.1061/(asce)0733-950x(1990)116:5(592)

  22. Rueben (2011), "Optical measurements of tsunami inundation through an urban waterfront modeled in a large-scale laboratory basin" in Coas. Eng., v. 58 (2011), p. 229

    https://doi.org/10.1016/j.coastaleng.2010.10.005

  23. Sarjamee (), "Large eddy simulation of extreme hydrodynamic forces on structures with mitigation walls using OpenFOAM" in Nat. Hazar., v. 85 (), p. 1689

    https://doi.org/10.1007/s11069-016-2658-5

  24. Sarjamee (), "Numerical investigation of the influence of extreme hydrodynamic forces on the geometry of structures using OpenFOAM" in Nat. Hazar., v. 87 (), p. 213

    https://doi.org/10.1007/s11069-017-2760-3

  25. Stansby (1998), "The initial stages of dam-break flow" in J. Fluid Mech., v. 374 (1998), p. 407

    https://doi.org/10.1017/S0022112098009975

  26. St-Germain, Philippe / Nistor, Ioan / Townsend, Ronald / Shibayama, Tomoya (2014): Smoothed-Particle Hydrodynamics Numerical Modeling of Structures Impacted by Tsunami Bores. Dans: Journal of Waterway, Port, Coastal, and Ocean Engineering, v. 140, n. 1 (janvier 2014).

    https://doi.org/10.1061/(asce)ww.1943-5460.0000225

  27. Stoker (2011), "Water Waves: The Mathematical Theory With Applications, Vol 36."
  28. Takabatake (2013), "Numerical study for the hydrodynamic pressure on the front of onshore structures by tsunami" in J. JSCE Ser. B2, v. 69 (2013), p. 851

    https://doi.org/10.2208/kaigan.69.I_851

  29. Wei (2015), "SPH modeling of dynamic impact of tsunami bore on bridge piers" in Coast. Eng., v. 104 (2015), p. 26

    https://doi.org/10.1016/j.coastaleng.2015.06.008

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10379282
  • Publié(e) le:
    11.11.2019
  • Modifié(e) le:
    11.11.2019