0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Application of Minnan Folk Light and Shadow Animation in Built Environment in Object Detection Algorithm

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 6, v. 13
Page(s): 1394
DOI: 10.3390/buildings13061394
Abstrait:

To resolve the problems of deep convolutional neural network models with many parameters and high memory resource consumption, a lightweight network-based algorithm for building detection of Minnan folk light synthetic aperture radar (SAR) images is proposed. Firstly, based on the rotating target detection algorithm R-centernet, the Ghost ResNet network is constructed to reduce the number of model parameters by replacing the traditional convolution in the backbone network with Ghost convolution. Secondly, a channel attention module integrating width and height information is proposed to enhance the network’s ability to accurately locate salient regions in folk light images. Content-aware reassembly of features (CARAFE) up-sampling is used to replace the deconvolution module in the network to fully incorporate feature map information during up-sampling to improve target detection. Finally, the constructed dataset of rotated and annotated light and shadow SAR images is trained and tested using the improved R-centernet algorithm. The experimental results show that the improved algorithm improves the accuracy by 3.8%, the recall by 1.2% and the detection speed by 12 frames/second compared with the original R-centernet algorithm.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10728396
  • Publié(e) le:
    30.05.2023
  • Modifié(e) le:
    01.06.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine