0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Application of Extreme Learning Machine to Damage Detection of Plate-Like Structures

Auteur(s):
Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 7, v. 17
Page(s): 1750068
DOI: 10.1142/s0219455417500687
Abstrait:

An effective method for damage detection of plate structures using the extreme learning machine (ELM) is proposed in this study. With the ELM, the mode shapes and natural frequencies of a damaged plate are treated as the input and the damage states in the plate elements as the output. The proposed method was applied to two numerical examples, namely, a cantilever and a plate with four-fixed supports containing one or several damages with and without noise in the modal data. The results obtained reveal that the methodology can be used as an effective technique for the damage identification of plate structures using the modal data and ELM.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455417500687.
  • Informations
    sur cette fiche
  • Reference-ID
    10352355
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine