Application of Enhanced K-Means and Cloud Model for Structural Health Monitoring on Double-Layer Truss Arch Bridges
Auteur(s): |
Chengzhong Gui
Dayong Han Liang Gao Yingai Zhao Liang Wang Xianglong Xu Yijun Xu |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Infrastructures, 23 août 2024, n. 9, v. 9 |
Page(s): | 161 |
DOI: | 10.3390/infrastructures9090161 |
Abstrait: |
Bridges, as vital infrastructure, require ongoing monitoring to maintain safety and functionality. This study introduces an innovative algorithm that refines bridge component performance assessment through the integration of modified K-means clustering, silhouette coefficient optimization, and cloud model theory. The purpose is to provide a reliable method for monitoring the safety and serviceability of critical infrastructure, particularly double-layer truss arch bridges. The algorithm processes large datasets to identify patterns and manage uncertainties in structural health monitoring (SHM). It includes field monitoring techniques and a model-driven approach for establishing assessment thresholds. The main findings, validated by case studies, show the algorithm’s effectiveness in enhancing clustering quality and accurately evaluating bridge performance using multiple indicators, such as statistical significance, cluster centroids, average silhouette coefficient, Davies–Bouldin index, average deviation, and Sign-Rank test p-values. The conclusions highlight the algorithm’s utility in assessing structural integrity and aiding data-driven maintenance decisions, offering scientific support for bridge preservation efforts. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
7.41 MB
- Informations
sur cette fiche - Reference-ID
10800602 - Publié(e) le:
23.09.2024 - Modifié(e) le:
23.09.2024