Application of Big Data Technology in Ship-to-Shore Quay Cranes at Smart Port
Auteur(s): |
Yibo Li
Shuaihang Li Qing Zhang Binglin Xiao Yuantao Sun |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Infrastructures, mai 2022, n. 5, v. 7 |
Page(s): | 73 |
DOI: | 10.3390/infrastructures7050073 |
Abstrait: |
As more and more container terminals are becoming intelligent, different kinds of sensors are widely installed at different locations of the cranes and collect a large amount of data. In order to effectively utilize and manage these huge amounts of actual working data of different sensors and grasp the status of the terminal, this article proposes a data processing framework that integrates the crane load, energy consumption, crane trolley speed and crane gearbox vibration signals of the container terminal. Firstly, the load spectrum of the crane load is calculated by the non-parametric density estimation method in probabilistic statistics and the energy consumption curves are obtained. Secondly, the driving cycle of the crane trolley speed are constructed by drawing on the method in the transportation field. Finally, the vibration signals of the crane gearbox are used for anomaly detection by unsupervised methods; at the same time, clustering results can also be used as the basis for extracting typical vibration signals and removing redundant data. |
Copyright: | © 2022 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.15 MB
- Informations
sur cette fiche - Reference-ID
10722871 - Publié(e) le:
22.04.2023 - Modifié(e) le:
10.05.2023