0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Application exploration of building deep learning model by adjusting algorithm combination relationship

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Physics: Conference Series, , n. 1, v. 2425
Page(s): 012053
DOI: 10.1088/1742-6596/2425/1/012053
Abstrait:

According to the Convention, the basic data type and XML representation algorithm are adopted, and after the organization is completed, it is compiled into Python code.According to the vectors in mathematics, whether the given algorithms share the same type of variables, the forward propagation and back propagation iterative algorithms in deep learning are used to train the model, and a new algorithm is combined according to the value of vectors, which is similar to the forward calculation in deep learning.Using the sample data to run the algorithm, the vector code is adjusted according to the error value in order to achieve convergence, which is similar to the reverse learning process in deep learning.In this way, it is expected to train a suitable model only by adjusting the parameter combination relationship of the algorithm sequence, and the neuron nodes and weight parameters are greatly reduced, which is expected to bring better learning effect.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1742-6596/2425/1/012053.
  • Informations
    sur cette fiche
  • Reference-ID
    10777621
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine