Anomaly Detection Based on LSTM Learning in IoT-Based Dormitory for Indoor Environment Control
Auteur(s): |
Seol-Hyun Noh
Hyeun Jun Moon |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 26 octobre 2023, n. 11, v. 13 |
Page(s): | 2886 |
DOI: | 10.3390/buildings13112886 |
Abstrait: |
This study focuses on gathering environmental data concerning the indoor climate within a dormitory, encompassing variables such as air temperature, relative humidity, CO2 concentration, fine dust concentration, illuminance, and total volatile organic compounds. Subsequently, an anomaly detection long short_term memory model (LSTM) model, utilizing a two-stacked LSTM model, was developed and trained to enhance indoor environment control. The study demonstrated that the trained model effectively identified anomalies within eight environmental variables. Graphical representations illustrate the model’s accuracy in anomaly detection. The trained model has the capacity to monitor indoor environmental data collected and transmitted using an Internet-of-Things sensor. In the event of an anomaly domain prediction, it proactively alerts the building manager, facilitating timely indoor environment control. Furthermore, the model can be seamlessly integrated into indoor environment control systems to actively detect anomalies, thereby contributing to the automation of control processes. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.46 MB
- Informations
sur cette fiche - Reference-ID
10753347 - Publié(e) le:
14.01.2024 - Modifié(e) le:
07.02.2024