0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

ANN modelling approach for predicting SCC properties - Research considering Algerian experience. Part III. Effect of mineral admixtures

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Building Materials and Structures, , n. 2, v. 8
Page(s): 128-138
DOI: 10.34118/jbms.v8i2.1080
Abstrait:

This paper addresses the effect of mineral admixtures on fresh and hardened properties of self compacting concrete (SCC). Artificial neural networks (ANN) and simplex lattice design approach was integrated to predict and evaluate the effect of limestone, marble powder, natural pozzolan and slag on rheological and mechanical properties of SCC evaluated by slump flow, L-Box, V-funnel, sieve segregation test and 28 days compressive strength. The modelling results show an acceptable prediction accuracy of SCC behaviour containing mineral admixtures as substitution of cement especially related to the flow time measured with the V-funnel test and mechanical compressive strength at 28 days.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.34118/jbms.v8i2.1080.
  • Informations
    sur cette fiche
  • Reference-ID
    10747244
  • Publié(e) le:
    07.12.2023
  • Modifié(e) le:
    08.01.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine