0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Analyzing the Time-Varying Thermal Perception of Students in Classrooms and Its Influencing Factors from a Case Study in Xi’an, China

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 1, v. 12
Page(s): 75
DOI: 10.3390/buildings12010075
Abstrait:

Owing to movement in the spatial environment and changes in activity levels, students’ thermal perception is time varying in classrooms throughout different periods of the day. However, previous studies have rarely considered the time-varying thermal perception in different periods of the day, which may cause discomfort for students and lead to energy wastage. Therefore, a study was conducted to investigate the time-varying thermal perception of students and its influencing factors in different classes of the day. In addition, the differences in students’ adaptive behaviors in different periods were also explored. A total of 578 university students were surveyed using questionnaire surveys during the heating season in Xi’an, China. The following results can be obtained: (1) The thermal sensation vote and thermal preference vote values in the afternoon were significantly higher than those in the morning. At the start of the first class in the morning/afternoon, the thermal sensation of the students had the highest sensitivity to outdoor temperature changes. (2) The students’ thermal perception was greatly affected by the preclass activity state at the start of the first class in the morning/afternoon. However, in other periods, the above phenomenon was not obvious. (3) In the afternoon, the frequency of clothing adjustment was greater than that in the morning, and this behavior would significantly affect the students’ thermal sensation. (4) Compared with the current classroom heating strategy, the heating strategy of dynamically adjusting the indoor set temperature according to the time-varying characteristics of the students can theoretically achieve energy savings of 25.6%.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10657776
  • Publié(e) le:
    17.02.2022
  • Modifié(e) le:
    01.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine