An Analytical Shape Memory Polymer Composite Beam Model for Space Applications
Auteur(s): |
D. Bergman
B. Yang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | International Journal of Structural Stability and Dynamics, février 2016, n. 2, v. 16 |
Page(s): | 1450093 |
DOI: | 10.1142/s021945541450093x |
Abstrait: |
Shape memory polymer composite (SMPC) structures, due to their ability to be formed into a small compact volume and then transform back to their original shape, are considered as a solution in the design of light-weight large deployable space structures. There is a wide array of constitutive and qualitative work being done on SMPC’s but little or no development of dynamic equations. This paper documents a macroscopic model for the shape fixation and shape recovery processes of a SMPC cantilever beam. In particular the focus is on the shape fixation process, whereby a quasi-static equilibrium model can be used instead of a full equation of motion. Numerical results are obtained in this regard by use of finite difference approximation with Newton’s method. This formulation combines a nonlinear geometric model with a temperature dependent constitutive law. Additionally, the dynamic equations of the SMPC cantilever are derived. Future work will include a dynamic numerical model, and a finite element model of the SMPC structure. |
- Informations
sur cette fiche - Reference-ID
10352572 - Publié(e) le:
14.08.2019 - Modifié(e) le:
14.08.2019