Analysis of Seismic Action on the Tie Rod System in Historic Buildings Using Finite Element Model Updating
Auteur(s): |
Suzana Ereiz
Ivan Duvnjak Domagoj Damjanović Marko Bartolac |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 22 septembre 2021, n. 10, v. 11 |
Page(s): | 453 |
DOI: | 10.3390/buildings11100453 |
Abstrait: |
Historic buildings have a high architectural value and their maintenance, repair and rehabilitation require a special approach. This approach is mainly based on the buildings’ performance under non-destructive tests such as operational modal analysis (OMA). Under extreme loads, such as earthquakes, these buildings require representative numerical models to simulate their expected response. In historic buildings, tie rods transfer axial loads and are typically used to balance horizontal trust due to static and dynamic loads associated with seismic actions. It is very important to determine the possibility of exceeding their load-bearing capacity under extreme loads, such as an earthquake. In this context, this paper presents an approach for the analysis of seismic action on the tie rod system in a historic building. The analysis was performed by combining the on-site experimental testing and the finite element model updating (FEMU) of the local models of tie rods and the global model of the structure. It was shown that the combination of analyzing local and global structural models, experimental on-site testing and FEMU is a viable solution for assessment of historic buildings’ load bearing capacity. |
Copyright: | © 2021 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
10.24 MB
- Informations
sur cette fiche - Reference-ID
10639472 - Publié(e) le:
30.11.2021 - Modifié(e) le:
02.12.2021