Analysis of Plastic Zone and Pressure Variance Features of Surrounding Rock of High-Altitude Macker Tunnel: A Case Study in Jiangluling Macker Tunnel in Qinghai
Auteur(s): |
Xiaojun Ma
Hongyan Guo Juyi Hu Shuang Cai Liang Cheng Danfeng Zhang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2021, v. 2021 |
Page(s): | 1-11 |
DOI: | 10.1155/2021/3632826 |
Abstrait: |
Due to the special mechanical properties of macker rock, problems may be caused easily if the pressure of the surrounding rock calculated from the standard empirical equation is used in the structural design of tunnel support, such as obviously insufficient bearing capacity of the support structure, large deformation, and collapse. Taking the Jiangluling Macker Tunnel in Gonghe-Yushu Highway as an example, the distribution pattern of plastic zone of the surrounding rock and the calculation method and reasonable values of pressure of the surrounding rock are studied in this paper, by means of theoretical analysis, numerical computation, and field measurement data. The results show that the elastic-plastic analysis method is suitable for the pressure of the surrounding rock of macker tunnel. The influence radius of the plastic zone of the surrounding rock can be 32 m, and the lateral pressure of the surrounding rock of the tunnel is equivalent to the vertical pressure. In the absence of test conditions and measured data, the pressure of the surrounding rock can be approximately 0.83 MPa for the purpose of design of tunnel support structure. This conclusion provides technical support for projects in similar conditions. |
Copyright: | © Xiaojun Ma et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
4.16 MB
- Informations
sur cette fiche - Reference-ID
10638307 - Publié(e) le:
30.11.2021 - Modifié(e) le:
17.02.2022