0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Analysis of Chaotic Vibrations of Flexible Plates Using Fast Fourier Transforms and Wavelets

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 7, v. 13
Page(s): 1340005
DOI: 10.1142/s0219455413400051
Abstrait:

In this paper chaotic vibrations of flexible plates of infinite length are studied. The Kirchhoff–Love hypotheses are used to derive the nondimensional partial differential equations governing the plate dynamics. The finite difference method (FDM) and finite element method (FEM) are applied to validate the numerical results. The numerical analysis includes both standard (time histories, fast Fourier Transform, phase portraits, Poincaré sections, Lyapunov exponents) as well as wavelet-based approaches. The latter one includes the so called Gauss 1, Gauss 8, Mexican Hat and Morlet wavelets. In particular, various plate dynamical regimes including the periodic, quasi-periodic, sub-harmonic, chaotic vibrations as well as bifurcations of the plate are illustrated and studied. In addition, the convergence of numerical results obtained via different wavelets is analyzed.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455413400051.
  • Informations
    sur cette fiche
  • Reference-ID
    10352804
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine