0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

An Airfield Area Layout Efficiency Analysis Method Based on Queuing Network and Machine Learning

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 3, v. 14
Page(s): 628
DOI: 10.3390/buildings14030628
Abstrait:

The layout design of an airfield area plays a crucial role in ensuring the efficiency of aircraft ground operations. In order to minimize delays caused by insufficient capacity and prevent resource wastage due to excessive capacity during the operational phase, this paper developed a prediction model for operational efficiency leveraging queuing network theory and machine-learning models. Our approach involves four key steps: (1) establish a theoretical framework for analyzing the operational efficiency of airfield area layouts based on queuing network theory, (2) employ a combination of discrete modeling and multi-agent modeling to construct a simulation model for ground operations in the airfield area, (3) develop a prediction model, known as PSO-ANN, for forecasting the operational efficiency of the airfield area using the simulation results, (4) conduct computer-based simulation experiments to assess the sensitivity of airfield area parameters, observe traffic-flow phase transitions, and investigate the factors influencing operational efficiency. This methodology enables the rapid assessment of operational efficiency for small- and medium-sized airports, as well as regional multi-airport systems. It is particularly useful for program evaluation during the strategic planning phase.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10773507
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    05.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine