AI-Driven BIM Integration for Optimizing Healthcare Facility Design
Auteur(s): |
Hamidreza Alavi
Paula Gordo-Gregorio Nuria Forcada Aya Bayramova David J. Edwards |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 23 juillet 2024, n. 8, v. 14 |
Page(s): | 2354 |
DOI: | 10.3390/buildings14082354 |
Abstrait: |
Efficient healthcare facility design is crucial for providing high-quality healthcare services. This study introduces an innovative approach that integrates artificial intelligence (AI) algorithms, specifically particle swarm optimization (PSO), with building information modeling (BIM) and digital twin technologies to enhance facility layout optimization. The methodology seamlessly integrates AI-driven layout optimization with the robust visualization, analysis, and real-time capabilities of BIM and digital twins. Through the convergence of AI algorithms, BIM, and digital twins, this framework empowers stakeholders to establish a virtual environment for the streamlined exploration and evaluation of diverse design options, significantly reducing the time and manual effort required for layout design. The PSO algorithm generates optimized 2D layouts, which are seamlessly transformed into 3D BIM models through visual programming in Dynamo. This transition enables stakeholders to visualize, analyze, and monitor designs comprehensively, facilitating well-informed decision-making and collaborative discussions. The study presents a comprehensive methodology that underscores the potential of AI, BIM, and digital twin integration, offering a path toward more efficient and effective facility design. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.35 MB
- Informations
sur cette fiche - Reference-ID
10795705 - Publié(e) le:
01.09.2024 - Modifié(e) le:
01.09.2024