0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Advancing the Circular Economy: Reusing Hybrid Bio-Waste-Based Gypsum for Sustainable Building Insulation

Auteur(s):


ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 12, v. 13
Page(s): 2939
DOI: 10.3390/buildings13122939
Abstrait:

Finding eco-friendly products that are beneficial to the environment and serve as tools for sustainable development is a contemporary challenge. This work illustrates the recovery of bio-waste-based materials, which not only improve the hygrothermal properties of gypsum but also promote the paper and wood recycling processes in a circular economy approach. The samples were subjected to tests for density, water absorption, ultrasonic pulse velocity, flexural strength, compressive strength, and thermophysical property characterization. A statistical analysis of variance was used to study the impact of waste on the physico-mechanical behavior of gypsum, leading to the development of predictive models that can be used to predict and optimize the performance of bio-composites in various applications. The results revealed a reduction in mechanical strength with the addition of waste, but the samples still exhibit superior insulation properties, surpassing commonly used standard boards. By adding ouate and wood wastes to a mass of 20% in its natural state, the gypsum becomes lighter and acts as a better insulator with a reduced density, thermal conductivity, and ultrasound velocity of up to 50%, 57%, and 83%, respectively. These findings show the significant implication of reducing environmental impacts while contributing to the promotion of sustainable building practices, both in new construction projects and in building renovations.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10754168
  • Publié(e) le:
    14.01.2024
  • Modifié(e) le:
    07.02.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine