0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Achieving Energy Self-Sufficiency in a Dormitory Building: An Experimental Analysis of a PV–AWHP-ERV Integrated System

Auteur(s):

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 4, v. 14
Page(s): 882
DOI: 10.3390/buildings14040882
Abstrait:

In this study, we investigated the performance of air-to-water heat pump (AWHP) and energy recovery ventilator (ERV) systems combined with photovoltaics (PV) to achieve the energy independence of a dormitory building and conducted an analysis of the energy independence rate and economic feasibility by using energy storage devices. Our data were collected for 5 months from July to November, and the building energy load, energy consumption, and system performance were derived by measuring the PV power generation, purchase, sales volume, AWHP inlet and outlet water temperature, and ERV outdoor, supply, and exhaust temperature. When analyzing representative days, the PV–AWHP integrated system achieved an energy efficiency ratio (EER) of 4.49 and a coefficient of performance (COP) of 2.27. Even when the generated electrical energy exceeds 100% of the electricity consumption, the energy self-sufficiency rate remains at 24% due to the imbalance between energy consumption and production. The monthly average energy self-sufficiency rate changed significantly during the measurement period, from 20.27% in November to 57.95% in September, highlighting the importance of energy storage for self-reliance. When using a 4 kWp solar power system and 4 kWh and 8 kWh batteries, the annual energy self-sufficiency rate would increase to 67.43% and 86.98%, respectively, and our economic analysis showed it would take 16.5 years and more than 20 years, respectively, to become profitable compared to the operation of an AWHP system alone.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10773416
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    05.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine