Acceleration sensor placement technique for vibration test in structural health monitoring using microhabitat frog-leaping algorithm
Auteur(s): |
Shuo Feng
Jinqing Jia |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Structural Health Monitoring, janvier 2017, n. 2, v. 17 |
Page(s): | 169-184 |
DOI: | 10.1177/1475921716688372 |
Abstrait: |
In this article, a microhabitat frog-leaping algorithm is proposed based on original shuffled frog-leaping algorithm and effective independence method to make the algorithm more efficient to optimize the 3-axis acceleration sensor configuration in the vibration test of structural health monitoring. Optimal sensor placement is a vital component of vibration test in structural health monitoring technique. Acceleration sensors should be placed such that all of the important information is collected. The resulting sensor configuration should be optimal such that the testing resources are saved. In addition, sensor configuration should be calculated automatically to facilitate engineers. However, most of the previous methods focus on the sensor placement of 1-axis sensors. Then, the 3-axis acceleration sensors are calculated by the method of 1-axis sensors, which results in non-optimal placement of many 3-axis acceleration sensors. Moreover, the calculation precisions and efficiencies of most of the previous methods cannot meet the requirement of practical engineering. In this work, the microhabitat frog-leaping algorithm is proposed to solve the optimal sensor placement problems of 3-axis acceleration sensors. The computation precision and efficiency are improved by microhabitat frog-leaping algorithm. Finally, microhabitat frog-leaping algorithm is applied and compared with other algorithms using Dalian South Bay Cross-sea Bridge. |
- Informations
sur cette fiche - Reference-ID
10562045 - Publié(e) le:
11.02.2021 - Modifié(e) le:
19.02.2021