3D printing of dual cross-linked hydrogel for fingerprint-like iontronic pressure sensor
Auteur(s): |
Honghao Yan
Jun Zhou Chengyun Wang Huaqiang Gong Wu Liu Weihong Cen Guixin Yuan Yu Long |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Smart Materials and Structures, 23 novembre 2021, n. 1, v. 31 |
Page(s): | 015019 |
DOI: | 10.1088/1361-665x/ac383c |
Abstrait: |
Hydrogels with intrinsic high stretchability and flexibility are extremely attractive for soft electronics. However, the existing complicated and laborious methods (such as mold curing) to fabricate microstructured hydrogel (MH) still limit the development of hydrogel-based sensors for flexible devices. Herein, we use digital light processing 3D printing technology to rapidly construct double-network (DN) ionic conductive hydrogel, and then design and print fingerprint-like MH film to manufacture an iontronic pressure sensor. In particular, the DN hydrogel consists of acrylamide/acrylic acid to form a covalently cross-linked network, and magnesium chloride is introduced to form an ionic cross-linked physical network in the hydrogel. The printability (with resolution 150 μm) and mechanical property tunability of DN hydrogel enable the convenient fabrication of sensors. With the biomimetic fingerprint MH film, the iontronic pressure sensor not only has a high sensitivity (0.06 kPa−1), but also has a large detection range (26 Pa–70 kPa) and good stability (200 cycles of pressure loading). We demonstrated that our sensor can be applied to realize tactile sensing in a prosthetic application and detect human motion. With the easy strategy of constructing DN hydrogel with microstructures by 3D printing technology, hydrogel-based sensors are anticipated to be employed in more smart electronics. |
- Informations
sur cette fiche - Reference-ID
10636243 - Publié(e) le:
30.11.2021 - Modifié(e) le:
30.11.2021