0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

3D-printable Kresling-embedded honeycomb metamaterials with optimized energy absorption capability

Auteur(s):

ORCID
ORCID
ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Smart Materials and Structures, , n. 12, v. 33
Page(s): 125008
DOI: 10.1088/1361-665x/ad8c04
Abstrait:

Kresling origami structure has attracted significant interest for achieving extraordinary mechanical properties. In this study, we proposed a new strategy to develop 3D-printable Kresling-embedded honeycombs (KEHs) based mechanical metamaterials and achieve optimized mechanical energy absorption capability. By exploiting the twisted deformation modes and boundary constraints, various KEH reinforced metamaterials were designed, where their deformation behaviors and energy absorption properties were investigated using finite element analysis and quasi-static compression tests. Effects of orientation twisting angle, boundary constraint and crease tilting angle on the deformation behaviors of these KEH reinforced metamaterials were studied to optimize their energy absorption properties. Finally, deformation behaviors and energy absorption properties of KEH reinforced metamaterials incorporated of KEH arrays in both 2D structure and 3D structures were studied. Both experimental and simulation results showed that the proposed KEH reinforced metamaterials achieved much more stable compression behaviors and higher energy absorption capabilities than those of the traditional honeycomb structures. This study provides a novel KEH reinforcement strategy for 3D printed metamaterials with optimized energy absorption capabilities to dramatically expand their practical applications.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1361-665x/ad8c04.
  • Informations
    sur cette fiche
  • Reference-ID
    10801424
  • Publié(e) le:
    10.11.2024
  • Modifié(e) le:
    10.11.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine